

Hadronic Interactions with Lattice QCD Martin J. Savage (Univ. of Washington)

MENU 2010

May 31-June 4, 2010 College of William and Mary Williamsburg, Virginia, USA

Nuclear Forces and Multi-Hadron Systems

Numerical Calculations with Quantifiable Uncertainties ²

Light and Medium Nuclei, Fusion e.g. GFMC and NCSM

First principles quantum solution for yet-to-be-measured unstable nucleus 14F

- Apply ab initio microscopic nuclear theory's predictive power to major test case
- Robust predictions important for improved energy sources
- Providing important guidance for DOE-supported experiments
- Comparison with new experiment will improve theory of strong interactions
- Dimension of matrix solved for 14 lowest states ~ 2x10⁹
- Solution takes ~ 2.5 hours on 30,000 cores (Cray XT4 Jaguar at ORNL)

Predictions:

Binding energy: 72 ± 4 MeV indicating that Fluorine-14 will emit (drip) one proton to produce more stable Oxygen-13.

Predicted spectrum (Extrapolation B) for Fluorine-14 which is nearly identical with predicted spectrum of its "mirror" nucleus Boron-14. Experimental data exist only for Boron-14 (far right column).

P. Maris, A. M. Shirokov and J. P. Vary, PRC, Rapid Comm., accepted, nucl-th 0911.2281

Fundamental Question(s) about our Universe

Cold QCD and Nuclear Forces

Nuclear Structure and Reactions

- Nuclear Physics is Fine-Tuned
 - Why ??
 - How much ??
 - Can other quark masses produce sufficient carbon ?
- Lattice QCD Calculations will provide answers

Maiani-Testa Theorem Implications for Nuclear Physics !

Away from Kinematic Thresholds

Maiani-Testa Theorem Implications for Nuclear Physics !

δ (s) ?

Away from Kinematic Thresholds

Energy Eigenvalues and the Luscher Relation

Below Inelastic Thresholds : Measure on lattice

$$\delta E = 2\sqrt{p^2 + m^2} - 2m$$

Energy Eigenvalues and the Luscher Relation

Below Inelastic Thresholds : Measure on lattice

$$\delta E = 2\sqrt{p^2 + m^2} - 2m$$

Nucleon-Nucleon Scattering

 ${}^{3}S_{1} - {}^{3}D_{1}$: pn , deuteron

 ${}^{1}S_{0}: pp, pn, nn$

Baryon-Baryon Scattering

 t/b_t

3-Baryons and the Triton Channel

Three Baryon Systems

Signal-to-Noise Mass-Scale

 $\Xi^0\Xi^0n$

Bose-Einstein Condensates and Many-Body Systems

- Systems with kaons and pions : Detmold + Smigielski (to appear)
- Algorithm developed to include arbitrary numbers : Detmold+mjs⁴

Fabricated Data for Optimization of Future Calcs.

Precision Level	Bound State Energy (MeV)	1 st ContinuumLevel (MeV)	-
0% 1% 5% 10%	$\begin{array}{r} -3.147 \\ -3.111 \pm 0.031 \\ -2.95 \pm 0.16 \\ -2.66 \pm 0.31 \end{array}$	4.005 4.015 ± 0.040 4.24 ± 0.20 3.65 ± 0.40	

Computational Requirements

Lattice QCD is on the verge of making significant contributions to Nuclear Physics.

- The next few years will see remarkable things
- Lattice QCD calculations
 - at the physical pion mass,
 - in large volumes
 - at small lattice spacings

are close at hand